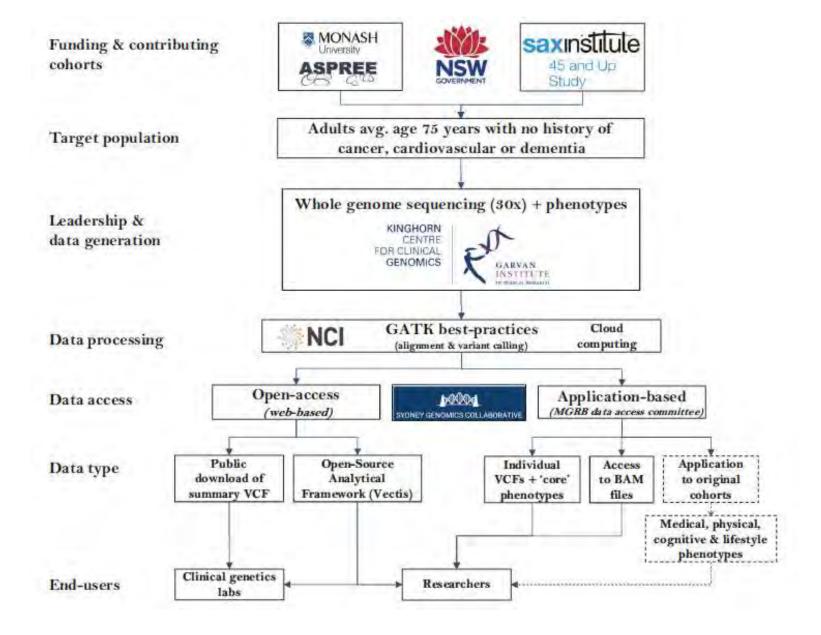


The Medical Genome Reference Bank

A universal reference cohort of healthy aging

Extreme phenotype sampling design

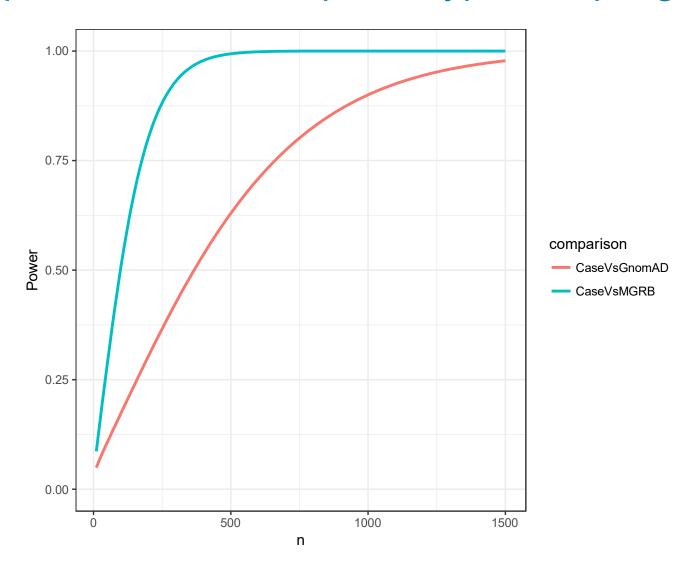
The Medical Genome Reference Bank


A publicly-available repository of genotypes of ~2,570 healthy elderly Australians.

Measure	ASPREE	45 and Up
Individuals	1,853	717
(percent female)	48.20%	59.30%
Age at blood draw (years)	79	70
	(75 - 95)	(64 – 91)
Height (m)	1.65	1.66
	(1.33 – 1.91)	(1.37 - 1.91)
Mass (kg)	74.5	72
	(33.4 - 127.1)	(36.0 - 147.0)
Mean sequencing depth (genome-wide)	38	39
	(26.8 - 46.0)	(27.3 - 45.5)
Genetic background		
Non-Finnish European	1,805	695
South and Central American	23	5
South Asian	14	6
Finnish European	10	7
East Asian	1	4

Paul Lacaze, John McNeil, Martin McNamara, Sally Redman

	MGRB	ExAC [4]	GnomAD [4]	UKBB SNPs [28]	HLI - JCVI [13]	Wellderly STSI [12]	SweGen [11]	HGVE [7]
Approx. cohort size (Feb 2018)	4000	60,000	140,000	500,000	10,000	600	1000	3200
Purpose-built cohort (versus data aggregation)	1	X	X	1	1	1	1	1
Whole genome sequencing	1	X	1	X	1	1	1	X
Ability to detect complex and SV	1	X	1	X	1	X	1	X
Phenotype data to confirm absence of disease	1	X	X	1	1	1	X	?
Confirmed healthy elderly population	1	X	X	X	X	1	X	X
Allele frequencies made readily accessible	1	1	1	x	x	X	1	1
Formal data access and approval policy	1	X	X	1	x	X	1	X
Access provided to individual VCFs	1	X	X	X	X	X	X	X
n≥4000 samples	1	1	1	1	1	X	X	X
Consistent and compatible seq. technology	1	1	1	X	1	X	1	1


MGRB Medical Genome Reference Bank, ExAC Exome Aggregation Consortium, GnomAD Genome Aggregation Database, UKBB SNPs U.K. Biobank SNP data set, HLI-JCVI Human Longevity Inc - J. Craig Venter Institute, STSI Wellderly Scripps Translational Science Institute Wellderly study, SweGen Swedish Genome reference population project, HGVD Human Genetic Variation Database (Japan)

Common variant burden in the wellderly

Polygenic score	Normalised score	P-value	→ MGRB → gnomAD			
		_				
Colorectal cancer	0.01	1.000	-0-			
Melanoma	0.49	0.392	-			
Breast cancer	0.67	0.122	-0-			
Prostate cancer	1.01	0.008	-0-			
Systolic blood pressure	0.49	0.392	-0-			
Pulse pressure	0.88	0.022	- o-			
Diastolic pressure	1.84	< 0.001	-0-			
EOCAD	2.34	< 0.001	-0-			
Alzheimer's disease	0.90	0.020	-0-			
Short lifespan	2.22	< 0.001	-0-			
			0 1 2 3			
			Normalised score (AU)			

The tripled power of extreme phenotype sampling

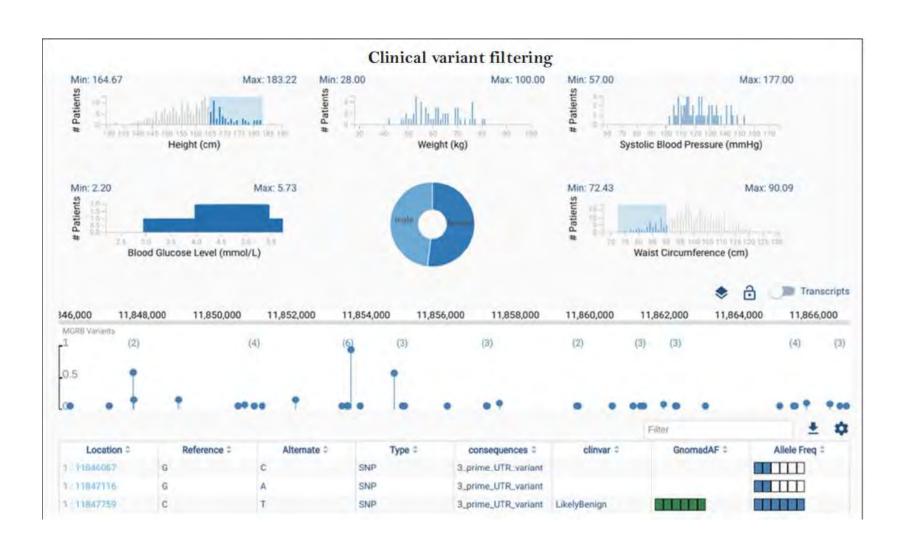
Somatic variation and ageing

40

60

Age at blood collection (years)

40


60

Age at blood collection (years)

Vectis: a searchable database of genetic variation

Users of MGRB

- Tier 1 access publicly available (date)
- 40 applications to use the MGRB
 - 11 International
 - 12 Interstate
 - 17 NSW
- 3 manuscripts published or in press, several under way

European Journal of Human Genetics (2019) 27:308–316 https://doi.org/10.1038/s41431-018-0279-z

@ American College of Medical Genetics and Genomic

ARTICLE

The Medical Genome Reference Bank: a whole-genome data resource of 4000 healthy elderly individuals. Rationale and cohort design

Paul Lacaze 601 · Mark Pinese 602,3 · Warren Kaplan2 · Andrew Stone2 · Marie-Jo Brion2 · Robyn L. Woods1 · Martin McNamara4 · John J. McNeil1 · Marcel E. Dinger 602,3 · David M. Thomas 602,3

A gene-centric strategy for identifying disease-causing rare variants in dilated cardiomyopathy

Claire Horvat, PhD¹, Renee Johnson, PhD¹, Lien Lam, PhD^{2,3}, Jacob Munro, BSc, MIT⁴, Francesco Mazzarotto, PhD⁵, Angharad M. Roberts, MRCP⁵, Daniel S. Herman, MD, PhD², Michael Parfenov, PhD², Alireza Haghighi, MD, PhD^{2,3,6}, Barbara McDonough, RN², Steven R. DePalma, PhD², Anne M. Keogh, MD^{7,8,9}, Peter S. Macdonald, MBBS, PhD^{7,8,9}, Christopher S. Hayward, MD^{7,8,9}, Amy Roberts, MD¹⁰, Paul J. R. Barton, PhD⁵, Leanne E. Felkin, PhD⁵, Eleni Giannoulatou, DPhil⁴, Stuart A. Cook, PhD, MRCP^{5,11}, J. G. Seidman, PhD^{2,3}, Christine E. Seidman, MD^{2,6} and Diane Fatkin, MD^{1,8,9}